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The Convergence of Accelerated Overrelaxation 
Iterations 

By A. J. Hughes Hallett 

Abstract. Accelerated Overrelaxation Iterations extrapolate the standard Successive Overre- 
laxation Iterations. This paper provides conditions for the convergence of the Accelerated 
Overrelaxation process; and a conditionally optimal version is derived for solving an arbitrary 
real linear equation system. 

1. Introduction. Hadjidimos [2] introduced the Accelerated Overrelaxation Itera- 
tive method (AOR) for the numerical solution of linear equation systems. It is a 
two-parameter generalization of the conventional Jacobi, Gauss-Seidel, and Succes- 
sive Overrelaxation techniques. Convergence results were provided for three cases; 
where the equation system results in an irreducible and weakly diagonally dominant 
matrix, or an L-matrix, or a consistently ordered matrix [2]. The purpose of this 
paper is to extend that convergence analysis to cover any real-valued equation 
system. Some attention is also given to the question of designing an appropriate 
computational form of the AOR method. 

2. AOR Calculations. Consider the system of n equations 
(1) Ay = b, 

where A E Rn' is a known real matrix with nonvanishing diagonal elements, and 
where y and b are respectively n-vectors of unknown and preassigned real variables. 
Let A = D - L - U such that 

D. fA11 if i =1' L f-A11 if j1< i, 
0 0 otherwise, ( 0 otherwise, 

and 

(-Ai. if j> i, 

UJ 
( 

otherwise. 
For convenience we impose the normalization D = I. Stationary first-order iterative 
methods for constructing the numerical solution to (1) have the form 

(2) y~~~~~(s+i) = Gy(s) + C s = 0, 1, 29 . . . 

given an arbitrary starting vector y(o). The AOR method is defined by 

(3) G = (I - aL) [(y - a)L + yU+(I - y)i] = Gay 

Received May 2, 1983; revised April 17, 1985 and September 17, 1985. 
1980 Mathematics Subject Classification. Primary 65F10. 

'31986 American Mathematical Society 
0025-5718/86 $1.00 + $.25 per page 

219 



220 A. J. HUGHES HALLETT 

and c = y(I - aL)-'b, where a and y are scalars. The AOR method is therefore a 
two-parameter generalization of the most widely used one-parameter first-order 
iterations. First-order methods are based on the splitting A = P - Q, where P is 
nonsingular, and they are completely consistent with (1) when G = P-'Q and 
c = P-'b define the iteration matrix and forcing function [9, pp. 64-70]. The AOR 
iterations contain the following standard methods as special cases, 

G0o1: the Jacobi method, with P = I. 

G1,1: the Gauss-Seidel method, with P = (I - L). 
Go0; the Jacobi overrelaxation method (JOR), with P = I/y. 
Ga.a: the successive overrelaxation method (SOR), with P = (I - aL)/la. 

But the unrestricted AOR method, Ga y, is in fact just a one-parameter extrapolation 
of an SOR iteration: 

LEMMA 1. Equation (2), with G defined by (3) for (a, y) 0 0, is identical to 
(4) y(S+l) = /3(Ga ay(s) + ac) +(1 -)y(S) 

where Gaa = (I - aL)-'(aU + (1 - a)I) is the SOR iteration matrix, and / = y/a. 

Proof. Since Ln = O, insert (I - aL)-'L = a'{(I - aL)-1 - I} into (3) to 
establish Gay = /3Ga a + (1 - /3)I. Hence (2) and (3) can be rewritten as (4). 

Comments: (a) Lemma 1 is important because it identifies the best computational 
form for the AOR iteration method. In order to take maximum advantage of the 
sparseness of (1), AOR iterations should be computed in two parts: first the SOR 
iterations 

(5) y(s+l/2) 
= a i lLjkY (s+1/2) + 1 (JkYI)+bi ( )ys 

k=1 k=.j+l 

for j = 1,..., n, and then the extrapolation part 

(6) y(s+1) = py(s+l/2) +(1- _3)y(s). 

(b) The AOR method is easy to implement. As (5) and (6) show, the sole 
modifications to any existing SOR computer program are the inclusion of one extra 
operation (i.e., (6)) and the storage of one extra n-vector. The storage requirements 
are therefore the same as for JOR methods. 

(c) The splitting of A which generates Ga y is given by P = (I - aL)/y. 
(d) AOR iterations, written as in (4), were called ESOR in [2]. In [5] they were 

independently proposed as the extrapolated SOR iterations (5) and (6), and their 
performance studied under the name of Fast Gauss-Seidel (FGS). 

3. Convergence Analysis. To establish convergence conditions for AOR iterations 
we use the following well-known result for one-parameter extrapolations: 

LEMMA 2. The JOR iteration y(S) -y(By(s) + b) + (1 -y)y(S) is convergent for 
some y > 0 if and only if ai < 1 j = 1 ..., n, where B = I - A has eigenvalues 

XI =a1+ib andi= . 

Proof. [4, p. 299], or [8, p. 78]. 

COROLLARY. The JOR iteration of Lemma 2 obviously also converges for some 
y < 0 if aI> 1, all]. But it is divergent if aj < 1 < ak for] * k [8, pp. 73-78]. 
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THEOREM 1. The AOR iteration, (2) and (3), is convergent for some (a, y) > 0 if 
aj < 1, j = 1,..,n, whereB =I - A haseigenvalues Xj = a. + ibj andi = fIT. 

Proof. 

G = /3(I + aL + +an-'Ln-1)(aU +(1 - a)I) +(1 - /)I 

= yB +(1 - y)I + yaL(B - I) + yO(a2) a - 0, 
where O(a2) contains all terms of order a2 and higher such that limaa 00(a2)/a = 

0. But Go0y = yB + (1 - y)I has eigenvalues of modulus 

Ieii = [(y(aj - 1) + 1)2 + Y2b2 1/2 

This implies 8jI.I/8y < 0, both at y = 0 and over the interval y E [0, (1 - aj 
where rj2 = (a 1)2+ b, if and only if aj < 1 for j = 1, ..., n. Now let Ga y have 
eigenvalues iu, j = 1, .. ., n. By (7), lima 14 = Iljl Hence by the above, or by 
Lemma 2 if a1 < 1 all j, some small y > 0 exists such that { ,LiI, Iji) < 1. 

COROLLARY. The SOR iteration converges for some a > 0 if aj < 1 allj. 

Proof. Insert y = a in (7) and repeat the argument in the proof of Theorem 1. 
Two questions now arise: (i) For what values of a and y is the AOR iteration 

convergent? and (ii) What are the optimal values of a and y? Unfortunately, only 
necessary conditions can be placed on a and y values to imply convergence. The 
reason for this is as follows. Since (I - aL) is nonsingular, IGay - tjII = 0 can be 
written as 

(8) /3a(U + L-I) + a(gi -I)L-(tj -1)I =0. 

This implies Ga y has a characteristic equation which is a polynomial of degree n in 
both a and y An explicit solution for [j in terms of a is therefore out of the 
question. In that case, it will not generally be possible to determine the values of a 
(and hence y) such that Ijl < 1 or that maxjIjI is minimized. But necessary 
conditions are: 

THEOREM 2. A OR iterations are convergent only if 0 < a, y < 2, when a, y ? 0. 

Proof. Equation (8) indicates that Ga y and I + a(gj - 1)L - /3aA share eigen- 
values. But the latter matrix has trace equal to n(1 - a3) = ?2y Hence, IyjI < 1 
only if 0 < y < 2. Secondly, IGa y - (1 - /3)II = j(j - (1 - /3)), which implies 

(9) ri ( -Li - - #) =|aU + fl(1 -a) I | if "(1 - a) " 

Now, combining (9) with the fact that IpjI < 1 only if / - 2 <,Y, - (1 - /) < / 
yields the desired result that IjI < 1, all j, only if 0 < a < 2 and IYI < 2. 

4. Conditional Optimization. There are three computational forms of the AOR 
iteration which could be used in practice. The form proposed in [2] is 

,j-l ,~~~j-1 
y( +1) = a E LjkYks 

+) + (Y - a) , LjkYks) 

(10) k=1 k=1 
11 

+7 E [jkYk( +(1 - y)Yj1 + yb. 
k=j+l 
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Rearranging terms yields 
?1I -1 

i(11e Y(S)= Y Ey Bky (s) + b ++(I y)y ) + a E LJk(y(S+ ) Y(s)) 
k=1 k=1 

since L + U = B, which implies a JOR (y) iteration plus an error correction 
mechanism in the final term. Finally, AOR iterations are also just SOR iterations (5) 
extrapolated by (6). Compared to standard Newton techniques, all three versions 
offer efficient computational forms in that they fully exploit the system's sparseness 
without the need to evaluate and invert matrices of partial derivatives. The point 
here is that the extrapolated SOR version, (5) and (6), is in many ways the easiest to 
use. It yields some general convergence results,and it also permits a partial optimiza- 
tion of the iteration parameters a and /3. 

The number of steps to convergence for the iteration (2), such that 

max (y(s + 1) - y.(s) )/y(s)I< T, 

is approximately log T/log p(G), where p(G) < 1 and p(.) denotes spectral radius. 
Hence, the optimal values of a and P3 (or y = 13a) are those which minimize p(Gay). 
However, for the reasons given in the last section, no explicit relationship between 
p(Gay) and a is available. That leaves only the possibility of an optimal P3 value 
conditional on particular a values. Various procedures are now available for comput- 
ing the optimal extrapolation parameter P3 in terms of the underlying iteration 
matrix Gaa. Theorem 1 in [6], for example, defines a directed "downhill" search for 
P * = min,,{maxJytJI}, where ye are the roots of Ga, y in terms of the eigenvalues of 
G,, for a given a value. A more complicated search procedure, which can also be 
applied to complex equations, appears in [3]. Finally, some simple ways of ap- 
proximating /3* automatically, without any preliminary eigenvalue calculations, are 
given in [7] and have proved very effective in test problems. 

How useful is this conditional optimality for AOR iterations? Single parameter 
iterative methods (e.g., JOR, SOR, or (4) with a = 1) have been widely used for 
solving economic models to generate routine forecasts and policy simulations, and 
the results in [5] show that the use of extrapolation parameters leads to substantial 
reductions in the cost of solving those models (as measured by the number of 
iterations to convergence). Hence, the attempt to pick good values for either a or /3 
is certainly worthwhile. The pertinent questions now are: would the additional gains 
from jointly optimizing a and /3 also be significant, and how much of those total 
gains could be obtained by using just one of the parameters? The latter question is 
important because we have exact results for choosing the extrapolation parameter /, 
but very few results to guide the choice of the SOR parameter a. Consequently, if 
the larger gains can be made by choice of /3 (given a suitable range of a values), or if 
most of the available improvements can be obtained by choice of /3 alone, then the 
optimization of /3 will obviously be worthwhile. Otherwise, conditional optimality 
has little practical value for AOR iterations. 

In [1], various numerical tests are carried out on the five leading econometric 
models of the UK economy, and the relevant results appear in Table 1. Evidently, 
the losses from not using either a or / can be substantial and, bar one uninteresting 
case, the losses caused by failing to use the extrapolation parameter (col. 2, /8 = 1) 
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TABLE 1 

Percentage losses from not optimizing a and /3 jointly 

Model a,fB both optimized a optimized; fi = 1 ft optimized; a = 1 a = 1; It = 1 

Liverpool 45 iterations a) 18% 4% oc (divergent) 
NIESR 13 iterations 0% 3% 4% 
CUBS 34 iterations 6% 0% 36% 
LBS 20 iterations 6% 0% 22% 
HMT 17 iterations 11% 4% 16% 

a) average number of iterations per solution in a 20-period forecast. The models are 
respectively those of Liverpool University, the National Institute of Economic and Social 
Research, City University, London Business School, and the British Treasury. Full references 
will be found in [1]. The optimization of a and ft (separately or jointly) was carried out here 
by numerical searches. 

are several times larger than the losses from failing to use the SOR acceleration 
parameter (col. 3, a = 1). Conditional optimality is important here because nearly 
all the available improvements can be generated by choice of the extrapolation 
parameter /3, without any SOR accelerations. It may nevertheless still be useful to 
conduct a limited search for a values which roughly minimize p(Ga aY). 
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